Abstract

Species extinction and immigration are both common in natural communities and the sequence with which species are lost from or added to communities may be crucial to community structure. We experimentally addressed this issue by growing six green algal species in monocultures and all possible two‐species mixtures, with two colonization sequences for each mixture. Both convergence and divergence in community structure were observed. The compositions containing particularly productive species were more likely to converge, while those comprising of species with similar monoculture yields were more likely to diverge. The species mixtures with high‐yielding initial and low‐yielding invading species produced more biomass than monocultures, but mixtures with the opposite assembly order produced only the same level of biomass as monocultures did. To address the diversity–ecosystem functioning issue, we estimate complementarity effect by relative yield total (RYT) and selection effect by the correlation between species’ monoculture yields and their relative yields in mixtures, respectively. We found overall negative complementarity and positive selection effect in mixtures with high‐yielding species as initial colonizers, but positive complementarity and negative selection effect in mixtures with low‐yielding initial species. Nonetheless, because we used only up to two species in each microcosm, our results are limited in addressing the relationship between species diversity and ecosystem functioning. Future research should study the effects of immigration history with many more species involved in community assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call