Abstract

BackgroundAnthracnose, caused by Colletotrichum dematium, is a serious threat to the production and quality of mulberry leaves in susceptible varieties. Control of the disease has been a major problem in mulberry cultivation. Some strains of Burkholderia cepacia were reported to be useful antagonists of plant pests and could increase the yields of several crop plants. Although B. cepacia Lu10-1 is an endophytic bacterium obtained from mulberry leaves, it has not been deployed to control C. dematium infection in mulberry nor its colonization patterns in mulberry have been studied using GFP reporter or other reporters. The present study sought to evaluate the antifungal and plant-growth-promoting properties of strain Lu10-1, to clarify its specific localization within a mulberry plant, and to better understand its potential as a biocontrol and growth-promoting agent.ResultsLu10-1 inhibited conidial germination and mycelial growth of C. dematium in vitro; when applied on leaves or to the soil, Lu10-1 also inhibited the development of anthracnose in a greenhouse, but the effectiveness varied with the length of the interval between the strain treatment and inoculation with the pathogen. Strain Lu10-1 could survive in both sterile and non-sterile soils for more than 60 days. The strain produced auxins, contributed to P solubilization and nitrogenase activity, and significantly promoted the growth of mulberry seedlings. The bacteria infected mulberry seedlings through cracks formed at junctions of lateral roots with the main root and in the zone of differentiation and elongation, and the cells were able to multiply and spread, mainly to the intercellular spaces of different tissues. The growth in all the tissues was around 1-5 × 105 CFU per gram of fresh plant tissue.ConclusionsBurkholderia cepacia strain Lu10-1 is an endophyte that can multiply and spread in mulberry seedlings rapidly and efficiently. The strain is antagonistic to C. dematium and acts as an efficient plant-growth-promoting agent on mulberry seedlings and is therefore a promising candidate as a biocontrol and growth-promoting agent.

Highlights

  • Anthracnose, caused by Colletotrichum dematium, is a serious threat to the production and quality of mulberry leaves in susceptible varieties

  • Antifungal activity of strain Lu10-1 against C. dematium in vitro When C. dematium and Lu10-1 bacteria were co-cultured on the same potato dextrose agar (PDA) plate, a distinct zone of inhibition was observed around the bacterial inoculum (Fig. 1a)

  • Biological control of Lu10-1 against mulberry anthracnose in a greenhouse To assess the effect of Lu10-1 on the anthracnose on mulberry leaves, the bacteria were applied to inoculated and uninoculated leaves or to the soil at different times before or after inoculation with C. dematium

Read more

Summary

Introduction

Anthracnose, caused by Colletotrichum dematium, is a serious threat to the production and quality of mulberry leaves in susceptible varieties. Some strains of Burkholderia cepacia were reported to be useful antagonists of plant pests and could increase the yields of several crop plants. The crop is susceptible to a number of diseases throughout the year [1] These diseases can lead to deterioration of leaf quality, and consumption of infected leaves by silkworm larvae adversely affects their development and cocoon characters [2]. Mulberry anthracnose, caused by Colletotrichum dematium, is a commonly observed disease and has become a serious threat to the production and quality of mulberry leaves in susceptible varieties [3] and a major problem in mulberry cultivation. Biological control of plant pathogens using antagonistic bacteria is a promising strategy and has attracted considerable attention in the efforts to reduce the use of agricultural chemicals [4]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.