Abstract
Soil salinity affects soil quality and reduces plant performance. Arbuscular mycorrhizal fungi (AMF) can enhance the tolerance of plants under salinity stress. Cultivation of eucalyptus (Eucalyptus camaldulensis), which exhibits high water use efficiency, is possible in saline areas to produce raw materials for the pulp industry. We determined the effects of arbuscular mycorrhizal fungi (AMF) on the growth and survival of eucalyptus seedlings under saline conditions. Three different clones of eucalyptus seedlings were pre-inoculated with three salt-tolerant AMF species, namely Glomus sp.2, Gigaspora albida and G. decipiens, and without pre-inoculation. The seedlings were grown in a greenhouse for 45 days. They were then transferred to individual pots, filled with field soil and subsequently treated with NaCl solution until electro-conductivity (EC) reached 10, 15 and 20 dS m−1. They were watered for 90 days under nursery conditions. The results show that increased salinity levels reduced plant performance, fractional AMF root colonization, spore number, and eucalypt K/Na ratio. AMF significantly increased chlorophyll and decreased leaf proline concentrations by more than 50% and 20% respectively and increased the K/Na ratio three- to six-fold compared with non-inoculated plants. Pre-inoculation with AMF before outplanting also improved plant performance by more than 30% under salinity stress compared to non-inoculated plants. We conclude that AMF can alleviate the negative impacts of salinity on plant physiological and biochemical parameters.
Highlights
Soil salinity affects soil quality and reduces plant performance
At the salinity level of 15 dS m−1, eucalyptus clone P6 pre-inoculated with Glomus sp.[2], was significantly heavier than when pre-inoculated with the other Arbuscular mycorrhizal fungi (AMF) species
Eucalyptus clones H4 and H8 pre-inoculated with G. albida had higher chlorophyll concentration compared to other AMF treatments, while eucalyptus clone P6 pre-inoculated with Glomus sp.[2] had higher leaf chlorophyll concentration than the other AMF treatments
Summary
Arbuscular mycorrhizal fungi (AMF) can enhance the tolerance of plants under salinity stress. We determined the effects of arbuscular mycorrhizal fungi (AMF) on the growth and survival of eucalyptus seedlings under saline conditions. Mycorrhizal plants grow better than non-AMF plants due to increased nutrient uptake, photosynthesis, water use efficiency, the production of osmoprotectants, higher K/Na ratios, and compartmentalization of Na within certain plant tissues[11]. These beneficial effects of AMF depend on the behavior of individual fungal species and strains[12]. We executed a three-factorial experiment with saline-tolerant strains of AMF, different eucalyptus clones (C), and soil salinity levels (S)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.