Abstract

Abstract Ulcerative colitis (UC) is a chronic inflammatory disease of colon, which is characterized by cryptarchitectural distortion. Alternation of colonic stem cell (CoSC) contributed to the occurrence of UC, yet the regulatory mechanisms remain unclear. To investigate the dysregulation of transcriptional and post-transcriptional regulation, we performed RNA-seq, ATAC-seq, and m6A meRIP-seq analysis of the cultured CoSCs that were isolated from UC patients. The transcriptome analysis revealed distinct expression signatures of UC patients in mild and severe stages. We observed abnormal activation of immune and extracellular matrix-related genes in patients affected by severe UC. The chromatin accessibility at the promoter regions of these genes was also specifically increased in the severe stage. In addition, we identified that a global loss of RNA m6A modification in the severe stage was accompanied by higher expression of the m6A demethylase FTO. The aberrant activation of a large number of immune and extracellular matrix-related genes, including IL4R, HLA-DPA1, and COL6A1, was related to both the gain of chromatin accessibility and the loss of m6A in severe UC patients. Our finding revealed an environment-independent immune activation of CoSCs in UC and provided FTO as a potential therapeutic target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.