Abstract

An automatic method to segment colonic polyps in computed tomography (CT) colonography is presented in this paper. The method is based on a combination of knowledge-guided intensity adjustment, fuzzy c-mean clustering, and deformable models. The computer segmentations were compared with manual segmentations to validate the accuracy of our method. An average 76.3% volume overlap percentage among 105 polyp detections was reported in the validation, which was very good considering the small polyp size. Several experiments were performed to investigate the intraoperator and interoperator repeatability of manual colonic polyp segmentation. The investigation demonstrated that the computer-human repeatability was as good as the interoperator repeatability. The polyp segmentation was also applied in computer-aided detection (CAD) to reduce the number of false positive (FP) detections and provide volumetric features for polyp classification. Our segmentation method was able to eliminate 30% of FP detections. The volumetric features computed from the segmentation can further reduce FP detections by 50% at 80% sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.