Abstract

Although the mucosal and the systemic immune compartments are structurally and functionally independent, they engage in cross-talk under specific conditions. To investigate this cross-talk, we vaccinated mice with tetanus toxoid together with cholera toxin with s.c. priming followed by intrarectal (IR) boosting. Interestingly, higher numbers of Ag-specific IgA and IgG Ab-secreting cells (ASCs) were detected in the lamina propria of the large intestine of mice vaccinated s.c.-IR. Ag-specific ASCs from the colon migrated to SDF-1alpha/CXCL12 and mucosae-associated epithelial chemokine/CCL28, suggesting that CXCR4(+) and/or CCR10(+) IgA ASCs found in the large intestine after s.c.-IR are of systemic origin. In the colonic patches-null mice, IgA ASCs in the large intestine were completely depleted. Furthermore, the accumulation of IgA ASCs in the colonic patches by inhibition of their migration with FTY720 revealed that colonic patches are the IgA class-switching site after s.c.-IR. Most interestingly, s.c.-IR induced numbers of Ag-specific IgA ASCs in the large intestine of TLR2(-/-), TLR4(-/-), MyD88(-/-), and TRIF(-/-) mice that were comparable with those of wild-type mice. Taken together, our results suggest the possibility that cross-talk could occur between the large intestine and the systemic immune compartments via the colonic patches without the assistance of innate immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.