Abstract

Recently there has been an increased interest in using electrical stimulation to regulate gut motility generally and particularly for the treatment of slow-transit constipation. In this preliminary canine study, we aimed to study the effects of colonic electrical stimulation (CES) on colonic motility and transit. Nine dogs, each equipped with a pair of serosal colon electrodes and a proximal colon cannula were randomized to receive: (i) sham-CES, (ii) long pulse CES (20 cpm, 300 ms, 6 mA) or (iii) pulse train CES (40 Hz, 6 ms, 6 mA). Animals underwent assessment of colonic contractions via manometry, and of colonic transit by inserting 24 radiopaque markers via the colonic cannula and radiographically monitoring the markers at 2, 4 and 6 h following their insertion. The colonic transit was assessed by the geometric centre. We found that, compared with sham-CES, pulse train CES, but not long pulse CES, significantly increased the overall colonic motility index twofold and accelerated the colonic transit by 104% at 2 h, by 60% at 4 h and by 31% at 6 h (P = 0.01, P = 0.02 and P = 0.03 vs sham-CES at 2, 4 and 6 h, respectively). The accelerating effect of pulse train CES was found to be mediated via both cholinergic and nitrergic pathways. CES with pulse trains has prokinetic effects on colonic contractions and transit in healthy dogs, mediated via the cholinergic and nitrergic pathways. Further clinical studies are warranted to explore the therapeutic potential of CES for slow colonic transit constipation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.