Abstract
Background/Aims: Inflammatory bowel disease is a chronic or remitting/relapsing intestinal inflammation, which comprises Crohn’s disease and ulcerative colitis (UC). Severe UC is a life-threatening condition that requires corticosteroids (CS) as a first-line rescue therapy. Some patients are refractory to CS and may require alternative immunosuppressive therapy. Oral tacrolimus (FK506), an immunosuppressive agent, has been reported to be effective in the management of severe refractory UC, but it can cause serious adverse effects. This work aims to study the effect of tacrolimus delivered by a colon-targeted delivery system (CTDS) in a dextran sulfate sodium (DSS)-induced animal model of colitis. Materials and Methods: We developed and evaluated an oral CTDS of tacrolimus (FK506) loaded pH-dependent polymeric microspheres, composed of Eudragit® S100 as a pH-sensitive polymer using the oil-in-water emulsion method. The physicochemical properties and drug release profiles of these microparticles in gastrointestinal tract (GIT) conditions were examined. A DSS-induced colitis rat model was used to evaluate the potential remedial and in vivo distribution of microspheres. Results: The pH-microspheres prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. The in vivo distribution study in the rat GIT demonstrated that pH-microspheres were successfully delivered to the inflamed colon. Moreover, it also demonstrated a significant decrease of disease activity and expression of proinflammatory cytokines, such as tumor necrosis factor α, interleukin-1β (IL-1β), and IL-6, and minimized the histological and morphometric changes. Conclusion: The results confirmed the efficacy of tacrolimus (FK506) CTDs in the management of DSS-induced colitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.