Abstract

For the purpose of development of orally active peptide therapeutics targeting NFκB for treatment of inflammatory bowel disease (IBD), two major barriers in oral delivery of therapeutic peptides, metabolic lability and tissue impermeability, were circumvented by introduction of a colon-targeted delivery system and cell permeable peptides (CPP) to NFκB inhibitory peptides (NIP). Suppression of NFκB activation was compared following treatment with various CPP conjugated NIPs (CPP-NIP). The most potent CPP-NIP was loaded in a capsule coated with a colon specific polymer, which was administered orally to colitic rats. The anti-inflammatory activity of the colon-targeted CPP-NIP was evaluated by measuring inflammatory indices in the inflamed colonic tissue. For confirmation of the local action of the CPP-NIP, the same experiment was done after rectal administration. Tissue permeability of the CPP-NIP was examined microscopically and spectrophotometrically using FITC-labeled CPP-NIP (CPP-NIP-FITC). NEMO binding domain peptide (NBD, TALDWSWLQTE) fused with a cell permeable peptide CTP (YGRRARRRARR), CTP-NBD, was most potent in inhibiting NFκB activity in cells. Colon-targeted CTP-NBD, but not colon-targeted NBD and CTP-NBD in an enteric capsule, ameliorated the colonic injury, which was in parallel with decrease in MPO activity and the levels of inflammatory mediators. Intracolonic treatment with CTP-NBD alleviated rat colitis and improved all the inflammatory indicators. CTP-NBD-FITC was detected at much greater level in the inflamed tissue than was NBD-FITC. Taken together, introduction of cell permeability and colon targetability to NIP may be a feasible strategy for an orally active peptide therapy for treatment of IBD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call