Abstract

AbstractTwo‐dimensional thermospheric wind fields, at both E and F region altitudes within a common vertical volume, were made using a Scanning Doppler Imager (SDI) at Poker Flat, Alaska, during a substorm event. Coinciding with these observations were F region plasma velocity measurements from the Super Dual Auroral Radar Network (SuperDARN) and estimations of the total downward and upward field‐aligned current density from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This combination of instruments gives an excellent opportunity to examine the spatial characteristics of high‐latitude ionosphere‐thermosphere coupling and how a process which is triggered in the magnetosphere (the substorm) affects that coupling at different altitudes. We find that during the substorm growth phase, the F region thermospheric winds respond readily to an expanding ionospheric plasma convection pattern, while the E region winds appear to take a much longer period of time. The differing response timescales of the E and F region winds are likely due to differences in neutral density at those altitudes, resulting in E region neutrals being much more “sluggish” with regard to ion drag. We also observe increases in the F region neutral temperature, associated with neutral winds accelerating during both substorm growth and recovery phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.