Abstract

A co-located equal-order control-volume-based finite-element method (CVFEW) for two- and three-dimensional, incompressible, viscous fluid flow is presented. The method works directly with the primitive variables. Triangular elements and polygonal control volumes, and tetrahedral elements and polyhedral control volumes are used to discretize the calculation domains in two- and three-dimensional problems, respectively. Two available flow-oriented upwind schemes (FLO and FLOS) and a novel mass-weighted skew upwind scheme (MAW) are investigated. In each dement, the velocity components in the mass flux terms are interpolated by special functions that prevent the generation of spurious pressure oscillations. The discretized equations are solved using an iterative sequential variable adjustment algorithm. Verification of the proposed CVFEM is presented in a companion article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call