Abstract

Gephyrin is a protein that copurifies with the glycine receptor (GlyR) and is required for the clustering of GlyRs at postsynaptic sites. Previously, it was thought that antibody mAb 7a, directed against gephyrin, was a specific marker for GlyR. However, there is evidence that gephyrin can also be found at nonglycinergic synapses. Here, immunocytochemistry was applied to show this directly for the rat retina. Both gephyrin and different subunits of the gamma-aminobutyric acid (GABA)A receptor were localized to discrete puncta in the inner plexiform layer, and these puncta were shown by electron microscopy to represent synaptic sites. Double immunocytochemistry revealed that GABAA receptors and GlyRs are not colocalized. However, gephyrin and different subunits of GABAA receptors were found to occur at the same synapses. The amount of colocalization varied with the GABAA receptor subunit composition and was most extensive for the alpha 2 subunit, less for the alpha 3 subunit, and minimal for the alpha 1 subunit. The gephyrin present at GABAergic synapses of the retina might also be involved with clustering of receptors at the postsynaptic sites. Hence, localization of gephyrin can no longer be considered as a unique marker of glycinergic synapses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.