Abstract

Brain-derived neurotrophic factor (BDNF) in the paraventricular nucleus of the hypothalamus (PVN) can regulate food intake and energy expenditure. However, the regulatory mediator of BDNF-positive neurons in the PVN remains unclear. Recently, widespread expression of the dopamine D1 receptor (DRD1) and D2 receptor (DRD2) has been observed in PVN neurons. We hypothesized that dopamine receptors (DRs) are also expressed in BDNF-positive neurons and mediate the function of BDNF in the PVN. Using multiple immunofluorescence assays combined with confocal microscopy, we found that BDNF-immunoreactive (IR) neurons were widely distributed throughout the PVN in both the magnocellular and parvocellular regions. The BDNF protein was mainly expressed in the somas of neurons. The distribution of DR-IR neurons exhibited a pattern similar to that of BDNF. Nearly all DRD1 and DRD2 expression occurred within BDNF-IR neurons. A large number of tyrosine hydroxylase (TH)-IR fibers innervated the entire PVN. The BDNF-IR neurons were surrounded by TH-IR nerve fibers that were punctiform or shaped like short bars. Additionally, BDNF colocalized with vasopressin-, oxytocin- and corticotrophin releasing hormone-positive neurons in the PVN. The present study suggests that DRs have a potential role in mediating the function of the PVN BDNF neurons. This finding is important for elucidating the central circuitry involved in energy balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call