Abstract

Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in different parts of the brain and functions as a neurotransmitter and neuromodulator. In the central nervous system (CNS), SST inhibits Ca2+ influx and regulates neuronal excitability in the hippocampus, the brain region which plays a major role in seizure, as well as cognitive and memory function. Much like SST, cannabinoid receptor 1 (CB1 receptor) is also widely distributed in the CNS, associated with memory function ad exerts inhibitory effects on seizure. It is unknown whether overlapping functional activities of SST and CB1 receptor are also associated with coexpression in the hippocampus. In the present study, we determined the colocalization between SST and CB1 receptor in adult rat brain hippocampus. In the CNS, the majority of SST positive interneurons coexpress neuronal nitric oxide synthase (nNOS). Accordingly, colocalization studies were also performed to determine whether nNOS positive neurons display comparable colocalization with CB1 receptor. The findings suggested that SST and nNOS are expressed in most interneurons whereas CB1 receptor is present in both interneurons and projection neurons in hippocampal regions. The distinct neuronal populations either expressing CB1 receptor, SST and nNOS alone or colocalization were observed in a region specific manner. Taken together, the observations described here anticipate the possibility of crosstalk between somatostatin subtypes and CB1 receptor in regulation of physiological activities in the hippocampus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.