Abstract

AbstractColmenar Limestone is one of the traditional materials most commonly used in monuments in Madrid, Spain. The petrophysical properties of this stone determine its high resistance to decay. Its low water absorption and pore size distribution favour good hydraulic behaviour, which is likewise furthered by its high ultrasound velocity and low anisotropy. The durability findings pursuant to the 280 freeze–thaw, 42 thermal shock, 30 salt crystallization and 120 salt mist cycles conducted confirmed the stone's resistance to decay in these simulated aggressive environments. The mass loss recorded in the samples and the variation in petrophysical parameters were generally very low after all except the salt crystallization trials, which induced loss of cohesion on the stone surface, increased roughness and the formation of concentric microcracks, sub-parallel to the more exposed surface, that also affected the arris and vertices of the specimens tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call