Abstract

The ability to effectively control brain dynamics holds great promise for the enhancement of cognitive function in humans, and the betterment of their quality of life. Yet, successfully controlling dynamics in neural systems is challenging, in part due to the immense complexity of the brain and the large set of interactions that can drive any single change. While we have gained some understanding of the control of single neurons, the control of large-scale neural systems -- networks of multiply interacting components -- remains poorly understood. Efforts to address this gap include the construction of tools for the control of brain networks, mostly adapted from control and dynamical systems theory. Informed by current opportunities for practical intervention, these theoretical contributions provide models that draw from a wide array of mathematical approaches. We present intriguing recent developments for effective strategies of control in dynamic brain networks, and we also describe potential mechanisms that underlie such processes. We review efforts in the control of general neurophysiological processes with implications for brain development and cognitive function, as well as the control of altered neurophysiological processes in medical contexts such as anesthesia administration, seizure suppression, and deep-brain stimulation for Parkinson's disease. We conclude with a forward-looking discussion regarding how emerging results from network control -- especially approaches that deal with nonlinear dynamics or more realistic trajectories for control transitions -- could be used to directly address pressing questions in neuroscience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.