Abstract

Colloid-polymer (CP) mixtures extend between two limiting cases, the colloid limit with the polymer coil size small compared to the colloid radius Rcol and the protein limit with the colloidal particles much smaller in size than the radius of gyration of the polymer chains Rg. In the present work, model systems are developed for the protein limit. The colloid-solvent pairs are optimized in terms of their isorefractivity in order to facilitate the characterization of large polystyrene chains in suspensions of small colloids. The degree of isorefractivity of colloidal particles was successfully evaluated in terms of a reduced scattering intensity. Two polystyrene samples with radii of gyration of Rg = 96 nm and Rg = 78 nm, respectively, are used. The radii of the colloidal particles are close to Rcol = 12 nm, leading to size ratios of Rg/Rcol = 8 and Rg/Rcol = 6.5. Four colloid solvent systems were found to be suitable for polymer characterization by light scattering, one based on silica particles and three systems with acrylate particles. The present investigation is focused on the three acrylate systems: poly(methyl methacrylate) in ethyl benzoate (ETB) at 7 degrees C, poly(ethyl methacrylate) in toluene at 7 degrees C and poly(ethyl methacrylate) in ETB at 40 degrees C. Characterization of PS chains is for the first time performed in colloid concentrations up to 2.5% by weight. In all cases, the size and shape of the polymer chains remain unchanged. A slight mismatch of the colloid scattering or a limited colloid solubility prevented investigation of PS chains at higher colloid concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.