Abstract

The structural (specific surface area, liquid-filtration coefficient, average pore radius, volume porosity, and structural-resistance coefficient) and electrokinetic (counterion transport numbers, specific electrical conductivity, and electrokinetic potential) characteristics of porous glasses with different compositions have been determined in potassium nitrate solutions with concentrations of 10−3–10−1 M. All the membranes under investigation have been shown to exhibit the dependences of efficiency coefficients and counterion transport numbers on electrolyte concentration and pore size that are predicted by the theory of an electrical double layer. It has been established that, at a constant electrolyte concentration, the absolute values of electrokinetic potential increase with the average pore radius because of variations in the slipping-plane position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call