Abstract

The regularities of variations in the electrokinetic potential and surface charge of nanoporous glass membranes with different compositions have been studied as depending on the type of an electrolyte (sodium, potassium, ammonium, tetramethylammonium, and tetraethylammonium chlorides) and the structure of pore space. It has been shown that, in solutions containing specifically sorbed organic counterions, the range of positive values of electrokinetic potential arises due to the superequivalent absorption of counterions in the Stern layer. It has been found that the influence of the specific adsorption of counterions on the electrokinetic potential of porous glasses increases with the amount of secondary silica in the pore space. The effects of the counterion specificity, pore channel sizes, and composition of a porous glass on the value of the surface charge have been analyzed. The absolute value of the surface charge has been shown to significantly increase in the presence of organic counterions in comparison with inorganic ions throughout the examined range of background electrolyte concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.