Abstract

The effects of confinement and electrostatic interactions on the ion diffusion in the particle-rock contact area yields a delay in particle detachment during low-salinity water injection in porous media. The objective of the work is laboratory and mathematical modelling of the effects of delayed particle detachment on colloid-suspension transport in porous media. We present the governing system for single-phase particulate flow accounting for non-equilibrium fines detachment. The exact solution for one-dimensional flow with varying salinity is derived. Laboratory coreflood tests on low-salinity water injection are performed. The measured breakthrough fine particle concentration and pressure drop across the core are matched by the analytical model with high accuracy. Introduction of delay in the model removes the concentration shocks present in the instant fines detachment model as fines detach continuously throughout the injection period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call