Abstract
Different attractive interacting colloidal systems are characterized by means of static light scattering. As most of these samples are rather concentrated, multiple scattering is suppressed by partial contrast match and the use of very a thin sample cell (13 μm). This is possible with the laboratory built flat cell light scattering instrument, which is also capable of time-resolved measurements. The systems under investigation are oil-in-water emulsions with added polymer micelles or latex spheres, which give rise to depletion interaction. A second set of samples consists of electrostatically stabilized dense silica suspensions, which are destabilized by ionic strength or pH shift initiated by an in-situ reaction. The potential change from repulsive to attractive is measured time-resolved in real time. These suspensions are model systems for the so-called direct coagulation casting (DCC) method. Scattering data are evaluated using the generalized indirect Fourier transformation (GIFT) method. We added some new routines for calculating structure factors for attractively interacting systems to the already existing software package. We now can choose between a depletion interaction and an attractive square well potential, which was used for the DCC samples. The obtained results are in good agreement with the values known from preparation for the depletion samples and those predicted from DLVO calculations for the DCC series, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.