Abstract
Rare earth-based halide double perovskites are regarded as an emerging class of X-ray scintillation materials. However, the majority of related scintillator applications are still focused on single crystal and powder systems; the application of nanocrystal (NC) scintillators is rarely reported. Here, we present the synthesis of high-purity Cs2NaTbCl6 NCs by an improved hot-injection method. Interestingly, hollow Cs2NaTbCl6 NCs are observed, the monitoring of the growth process indicates that micrometer-sized NaCl is the initial product, and then the NaCl would convert into Cs2NaTbCl6 NCs through the diffusion of Cs+ and Tb3+ into NaCl lattice, and the faster outward diffusion of Na+ results in the formation of hollow NCs. The double perovskite NCs exhibit green light emission, and the photoluminescence intensity can be significantly enhanced through Ce3+ doping. In particular, the Cs2NaTbCl6:5%Ce3+ scintillator exhibits a linear response and a low detection limit of 79.09 nGy/s when exposed to X-rays. Furthermore, a flexible scintillator film for X-ray imaging is prepared by mixing NCs with polymer, showing a high spatial resolution imaging capability of 10 lp/mm. This work provides a new strategy for hollow perovskite NCs and may shed light on the synthesis of related hollow NCs and their applications in X-ray detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Inorganic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.