Abstract

Block copolymer nanoparticles have been widely used for advanced materials. However, the stabilization is challenging. Herein, we present a method for convenient yet reliable synthesis of stabilized polyion complex (PIC) nanometer-sized spheres and micrometer-sized ultrathin lamellae and vesicles by taking advantage of the wavelength orthogonality of UV-induced disulfide exchange and visible light-initiated polymerization-induced electrostatic self-assembly (PIESA). Disulfide-containing PIC vesicles are synthesized at scale using this PIESA, undergoing a small sphere-to-larger sphere-to-lamella-to-vesicle transition. As such, surface-neutralized and surface-charged micrometer-sized vesicles can be achieved. UV irradiation of the vesicles (5.0 mg/mL in water) in ambient air induces very fast exchange reaction of locally confined/enriched disulfide motifs, leading to cross-linking, shape transition, and cystamine salt release in 4 min. As such, cross-linked PIC spheres, lamellae, and vesicles can be achieve...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.