Abstract

Perfluorosulfonic acid (PFSA) ionomers serve a vital role in the performance and stability of fuel-cell catalyst layers. These properties, in turn, depend on the colloidal processing of precursor inks. To understand the colloidal structure of fuel-cell catalyst layers, we explore the aggregation of PFSA ionomers dissolved in water/alcohol solutions and relate the predicted aggregation to experimental measurements of solution pH. Not all side chains contribute to measured pH because of burying inside particle aggregates. To account for the measured degree of dissociation, a new description is developed for how PFSA aggregates interact with each other. The developed single-counterion electrostatic repulsive pair potential from Part I is incorporated into the Smoluchowski collision-based kinetics of interacting aggregates with buried side chains. We demonstrate that the surrounding solvent mixture affects the degree of aggregation as well as the pH of the system primarily through the solution dielectric permittivity, which drives the strength of the interparticle repulsive energies. Successful pH prediction of Nafion ionomer dispersions in water/n-propanol solutions validates the numerical calculations. Nafion-dispersion pH measurements serve as a surrogate for Nafion particle-size distributions. The model and framework can be leveraged to explore different ink formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.