Abstract

The colloidal stability of the dextran-modified poly(methyl methacrylate) (PMMA) latex particles toward adsorption of a carbohydrate-binding protein, concanavalin A (Con A), is primarily controlled by the charge neutralization mechanism. Formation of a crosslinked network structure via the specific affinity interactions between the dimeric Con A molecules and the dextran molecules anchored onto different latex particles may also have an impact on the coagulation kinetics. Judging from the data of coagulation kinetics, the colloidal stability of the latex particles toward added Con A in the decreasing order is: latex particles without dextran modification>latex particles with a dextran content of 2.15%>latex particles with a dex-tran content of 1.24% based on total polymer weight (PMMA+grafted dextran). The coagulation mechanisms involved in the adsorption of Con A onto the latex particles have been proposed to explain these experimental data. Charge neutralization of the negatively charged latex particles by adsorption of the positively charged Con A is the predominant destabilization mechanism. The ratio of the number of dextran active sites to that of Con A molecules plays an important role in the formation of the crosslinked network structure. The electrolytes in water cause a reduction in the electrostatic repulsion force among the interactive latex particles, but this ionic strength effect is not significant in comparison with charge neutralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.