Abstract
A colloidal solution of nanophotonic structures exhibiting optical magnetism is dubbed a liquid-phase metamaterial or an optical metafluid. Over the decades, plasmonic nanoclusters have been explored as constituents of a metafluid. However, optical magnetism of plasmonic nanoclusters is usually much weaker than the electric responses; the highest reported intensity ratio of the magnetic-to-electric responses so far is 0.28. Here, we propose an all-dielectric metafluid composed of crystalline silicon nanospheres. First, we address the advantages of silicon as a constituent material of a metafluid among major dielectrics. Next, we experimentally demonstrate for the first time that a silicon nanosphere metafluid exhibits strong electric and magnetic dipolar Mie responses across the visible to near-infrared spectral range. The intensity ratio of the magnetic-to-electric responses reaches unity. Finally, we discuss the perspective to achieve unnaturally high (>3), low, and even near-zero (<1) refractive index in the metafluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.