Abstract

The key ingredients to the successful bottom-up construction of complex materials are believed to be colloids with anisotropic shapes and directional, or patchy, interactions. We present an approach for creating such anisotropic patchy particles based on reconfiguring randomly shaped aggregates of colloidal spheres. While colloidal aggregates are often undesirable in colloidal dispersions due to their random shapes, we exploit them as a starting point to synthesize patchy particles. By a deliberate destabilization of the colloidal particles, diffusion-limited aggregation is induced which partitions the particles into randomly shaped aggregates with controlled size distribution. We achieve a reconfiguration of the aggregates into uniform structures by swelling the polymer spheres with an apolar solvent. The swelling lowers the attractive van der Waals forces, lubricates the contact area between the spheres, and drives the reorganization through minimization of the interfacial energy of the swollen polymer network. This reorganization process yields patchy particles whose patch arrangement is uniform for up to five patches. For particles with more patches, we find that the patch orientation depends on the degree of phase separation between the spheres and the monomer. This enables the synthesis of patchy particles with unprecedented patch arrangements. We demonstrate the broad applicability of this recycling strategy for making patchy particles as well as clusters of spheres by varying the swelling ratio, swelling solvent, surfactant concentration, and swelling time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call