Abstract

Lead sulfide colloidal quantum dots, similar to the nanoscale crystals of most semiconductor crystals, are available in a variety of sizes, shapes, and compositions as well as to make different chemical molecular ligands to modify the surface of the quantum dots and to fabricate functional optoelectronic devices on a variety of substrate materials. The combination of silicon and colloidal quantum dots enables the fabrication of silicon-based compatible quantum dot optoelectronic devices over a wide range of applications. In this paper, the effects of channel doping concentration and channel length on the performance of silicon-based CQD/Si photodetectors are calculated and analyzed from the simulation method. The results show that a suitable doping concentration and a short channel length can improve the performance of the device, which provides a simulation basis for the fabrication of silicon-based compatible arrayed colloidal quantum dot photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.