Abstract

Colloidal quantum dot (CQD) solar cells with a certified power conversion efficiency of 11.28% were characterized using camera-based heterodyne lock-in carrierography (HeLIC) and photocarrier radiometry (PCR). Carrier lifetime, diffusivity, and diffusion and drift length of a CQD solar cell were imaged in order to investigate carrier transport dynamics, as well as solar cell homogeneity and the effects of Au contacts on carrier transport dynamics. Using room temperature HeLIC imaging which has also been demonstrated using PCR measurements, shorter carrier lifetimes (ca. 0.5μs) were found in Au contact regions that can be attributed to enhanced non-radiative recombinations through trap states at Au/CQD interfaces. This imaging methodology shows strong potential for elucidating the energy loss physics of CQD solar cells and for industrial non-destructive large-area photovoltaic device characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call