Abstract

This study elucidates the intricate interactions between chitin nanocrystals (ChNC) and surfactants of same hydrophobic tail (C12) but different head groups types (anionic, cationic, nonionic): sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and polyoxyethylene(23)lauryl ether (Brij-35). Isothermal Titration Calorimetry (ITC) and rheology are used to study the complex ChNC-surfactant interactions in aqueous media, affected by adsorption, self-assembly and micellization. The ITC results demonstrate that the surfactant head group significantly influences the dynamics and nature of the involved phenomena. Cationic DTAB's reveal minimal interaction with ChNC, non-ionic Brij-25's interact moderately at low concentrations driven by hydrophobic effects while SDS's interacts strongly and show complex interaction patterns that fall across four distinct regimes with SDS addition. We attribute such behavior to initiate through electrostatic attraction and terminate in surfactant micelle formation on ChNC surfaces. ITC also elucidates the impact of ChNC concentration on key parameters including critical aggregation concentration (CAC) and saturation concentration (C2). Dynamic rheological analysis indicates the molecular interactions translate to non-linear variations in the elastic modulus (G') upon SDS addition mirroring that observed in ITC experiments. Such a direct correlation between molecular interactions and macroscopic rheological properties provides insights to aid in the creation of nanocomposites with tailored properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.