Abstract

Graphite-assisted laser desorption/ionization (GALDI) mass spectrometry (MS) was investigated for analysis of cerebrosides in a complex total brain lipid extract. Conventional MALDI MS and GALDI MS were compared regarding lipid analysis by using high-vacuum (HV, <10-6 Torr) LDI time-of-flight mass spectrometry and intermediate-pressure (IP, 0.17 Torr) linear ion trap mass spectrometry. Cerebrosides were not detected or detected with low sensitivity in MALDI MS because of other dominant phospholipids. By using GALDI, cerebrosides were detected as intense mass peaks without prior separation from other lipid species while mass peaks corresponding to phosphatidylcholines (PCs) were weak. The signal increase for cerebrosides and the signal decrease for PCs in GALDI MS were more significant in HV than in IP. MSn experiments of precursor ions corresponding to cerebrosides and PCs in brain lipid extract were performed to identify the detected species and distinguish isobaric ions. Twenty-two cerebroside species were detected by GALDI whereas eight cerebroside species were detected by MALDI. Sulfatides in brain lipid extract were also easily detected by GALDI MS in the negative ion mode. By forming a colloidal graphite thin film on rat brain tissue, direct lipid profiling by imaging mass spectrometry (IMS) was performed. Chemically selective images for cerebrosides and sulfatides were successfully obtained. Imaging tandem mass spectrometry (IMS/MS) was performed to generate images of specific product ions from isobaric species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call