Abstract

Sebba (1987) defined colloidal gas aphrons (CGA) as microbubbles stabilized by surfactant layers, which are created by stirring surfactant solutions at speeds greater than a critical value. A high shear impeller is used for stirring and critical values for the impeller speed must be exceeded to create these stable gas liquid dispersions (typically >5000 rpm). Although there have been no previous reports of direct protein recovery using CGA, it is likely that, with appropriate choice of surfactant, proteins should adsorb to these surfactant bubbles by means of electrostatic and/or hydrophobic interactions. This is the basis of this study, in which the use of CGA for protein recovery from aqueous solution is considered. A surfactant which has been characterized previously for generation of CGA was chosen (Jauregi et al., 1997), i.e., the anionic surfactant sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT). Lysozyme, a well-characterized protein, was chosen as the protein to be recovered. Lysozyme was recovered successfully from aqueous solution using CGA generated from AOT. At optimum conditions, lysozyme recovery, enrichment ratio, and separation ratio were 95%, 19 and 302 respectively, with enzyme activity maintained. These results indicate the exciting potential of this technique. A wide range of process conditions including initial concentration of protein and surfactant, surfactant/protein molar ratio, pH, and ionic strength were considered. High recoveries and enrichments were generally obtained at protein concentrations </=0.41 mg/mL, and surfactant concentrations >0.11 mg/mL. However, at high ionic strength (0.29M) poor separation and recoveries were obtained at low protein concentrations (counter-ions diminishing electrostatic interactions between protein and aphrons at this condition). In general, (ns/np)a was determined to be between 10 and 16 for experiments in which high levels of recovery/separation parameters were found. For most conditions, protein precipitation was observed; however, this precipitate could be resolubilized without loss of enzyme activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.