Abstract

Membrane fouling induced by industrial flue gas deteriorates their gas capturing efficiency, which is mainly caused by the adhesion of aerosol particles. To fully understand the mechanism of membrane fouling, a quantitative study of the adhesion force of particle on membrane surface was investigated by atomic force microscopy (AFM). The adhesion force of a single particle with flat glass, silicon wafer, PP (polypropylene) membrane, and fly-ash particles were measured within the relative humidity (RH) of 0 ~ 85%. The results showed the adhesion force of a particle with membrane have not much difference from the glass and silica wafer. And the surface roughness of flat substrate has slight effect on the adhesion force of the micrometer scale particle on flat surface at dry condition, while measured adhesion forces show obvious RH dependent for glass and membrane. Additionally, at dry conditions, the adhesion force of inter-particles also shows no obvious quantitative difference but obvious scattering comparing to that on membrane. The adhesion force of inter-particles increased more higher with the RH than that on membrane, which indicates the adhesion between micrometer scale particles can accelerate the deposition of particles on membrane and contributes the most to membrane fouling in industry atmosphere.

Highlights

  • Coal-fired power plants contribute at least 40% of CO2 emissions[1], which makes the CO2 emission control for the power plants crucial important[2,3]

  • A severe membrane fouling was observed over used membrane

  • Some of these fine particles adhered on the surface of membrane individually or in clusters

Read more

Summary

Introduction

Coal-fired power plants contribute at least 40% of CO2 emissions[1], which makes the CO2 emission control for the power plants crucial important[2,3]. The particle probe was prepared by attaching a SiO2 sphere as a fly-ash particle to the tip of atomic force microscopy (AFM) cantilever to study the adhesion force of particle with different substrates.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.