Abstract
Vitamin E (VitE) is one of the most important antioxidants and plays a key role in decreasing the inflammatory effects of oxidative stress caused by recurrent doses of iron administration in anemia treatment. However, VitE is poorly soluble in aqueous environments. Here, VitE encapsulation into solid lipid nanoparticles (SLN) composed of myristil myristate to improve its bioavailability was proposed. A 99.9 ± 0.1% encapsulation efficiency with a drug/lipid ratio of 500 µg/mg and 478 higher VitE solubility was obtained. The antioxidant properties of VitE after encapsulation were maintained. SLN-VitE showed a 228.2 nm mean diameter with low polidispersitivity (0.335), and negative Z potential (ζ ≈ −9.0 mV). The SLN were well-dispersed, displayed spherical and homogeneous morphology by TEM. A controlled release of VitE from SLN was found. The XRD and FTIR analyses revealed the presence of a nanostructured architecture of SLN after VitE incorporation. We probed the safety of SLN-VitE after contact with three in vitro cell models: erythrocytes, lymphocytes and HepG2 cells. The cell viability in presence of SLN, SLN-VitE, and their combinations with iron was not affected. The comet assay demonstrated that the DNA damage caused by iron administration was decrease in presence of SLN-VitE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.