Abstract

Bimodal porous carbons with both micropores and meso- or macropores were selectively synthesized by an SiO 2 colloidal crystal-templating process. The SiO 2 opal templates exclusively contributed to the formation of meso-and macropores in carbons. The electrical double-layer capacitance per surface area of the templated porous carbons was much larger than those of commercially available activated carbons with high surface areas. The surface of meso- and macropores generated in the porous carbons shows a highly efficient electrical double-layer capacitive property; the specific capacitance per surface area originating from meso- and/or macropores was estimated to be 20 ′ 2 μF cm - 2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.