Abstract

This article presents an overview of our research in the field of colloidal nanocrystal synthesis and their implementation into water splitting and CO2 reduction electrochemical cells. We discuss our approaches to tailor-made novel material platforms to advance our knowledge in energy storage in chemical bonds, namely artificial photosynthesis. Herein, we focus on complex metal oxides as light absorbers to drive water splitting, nanocrystal hybrids and metals as electrocatalysts for carbon dioxide conversion. Our approach to solve the synthetic challenges so to achieve very precise control on size, shape and composition of such materials is highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.