Abstract
HypothesisAs a mainstream process in the extraction and recovery of crude oil, water is injected into reservoirs in the so-called waterflooding process to facilitate the oil displacement through the wellbore, typically generating water-in-oil (W/O) emulsions. Based on economic considerations, sea water is used in the flooding process; however, the ionic incompatibility between the injected water and the formation water inside the reservoir may precipitate sparingly-soluble inorganic salts (scale). We hypothesize that calcium carbonate (CaCO3) scale dynamically interacts with cationic surfactants in W/O emulsions, resulting in (i) scale growth retardation and (ii) emulsion destabilization. ExperimentsWe developed stable W/O emulsions via combining droplet-based microfluidics with multifactorial optimizations to investigate the influence of emulsion properties, such as surfactant type and concentrations, temperature, and pH, as well as calcium ions on the CaCO3 scaling kinetics and emulsion stability. The CaCO3 scale was characterized based on particle size and charge, lattice structure, interactions with the surfactant, and time-dependent effects on emulsion stability. FindingsThe interfacial interactions between the cationic surfactant (cetyltrimethylammonium bromide, CTAB) and CaCO3 retarded scale growth rate, decreased crystal size, and destabilized emulsion within hours as a result of surfactant depletion at the water–oil interface. The surfactant did not affect the crystal structure of scale, which was formed as the most thermodynamically stable crystalline polymorph, calcite, at the ambient condition. This fundamental study may open new opportunities for engineering stable W/O emulsions, e.g., for enhanced oil recovery (EOR), and developing scale-resistant multiphase flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.