Abstract

The results of computer models for colloidal aggregation, that consider both Brownian motion and gravitational drift experienced by the colloidal particles and clusters, are extended to include concentrations spanning three orders of magnitude. In previous publications and for a high colloidal concentration, it was obtained that the aggregation crosses over from diffusion-limited colloidal aggregation (DLCA) to another regime with a higher cluster fractal dimension and a speeding up followed by a slowing down of the aggregation rate. In the present work we show, as the concentration is decreased, that we can still cross over to a similar regime during the course of the aggregation, as long as the height of the sample is increased accordingly. Among the differences between the mentioned new regimes for a high and a low colloidal concentration, the cluster fractal dimension is higher for the high concentration case and lowers its value as the concentration is decreased, presumably reaching for low enough concentrations a fixed value above the DLCA value. It is also obtained the fractal dimension of the sediments, arising from the settling clusters that reach the bottom and continue a 2D-like diffusive motion and aggregation, on the floor of the container. For these clusters we now see two and sometimes three regimes, depending on concentration and sedimentation strength, with their corresponding fractal dimensions. The first two coming from the crossover already mentioned, that took place in the bulk of the sample before the cluster deposition, while the third arises from the two-dimensional aggregation on the floor of the container. For these bottom clusters we also obtain their dynamical behavior and aggregation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.