Abstract

The colloid stability of synthetic titania particles was studied as a function of KCl concentration at pH values of 6.3, 6.7, and 8.4, using static light scattering to obtain stability ratios. Standard DLVO theory was then used to calculate the stability ratios as a function of salt concentration. Reasonable agreement between theory and experiment could only be obtained if an effective interaction radius, corresponding to surface asperities on the titania particles, was used in the calculation. High-resolution TEM images suggest that the effective interaction radius corresponds to the size of surface crystallites formed during synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call