Abstract

Graft coatings of poly(N-isopropylacrylamide) (pNIPAM) are of considerable interest for the reversible control of bio-interfacial interactions. In this study, graft coatings were prepared by free radical polymerisation from surface-bound polymerisable groups, on silicon wafers and quartz crystal microbalance (QCM) sensors. QCM with dissipation monitoring showed a gradual, extended phase change as the temperature increased. Colloid probe atomic force microscopy (CP-AFM) revealed a marked change in the compressibility of the coating below and above the lower critical solution temperature (LCST). Force curves showed an approximate 9-fold reduction in thickness between 24 °C and 38 °C, yet the collapsed coating at 38 °C still had a thickness significantly higher than the ellipsometrically determined dry thickness, indicating a residual extent of hydration above the LCST. At all temperatures, interaction force curves showed steric repulsion, though over different distances. There was little hysteresis between approach and retract force curves, which is evidence for almost instantaneous relaxation of the coating upon decompression. CP-AFM using a probe coated with bovine serum albumin (BSA) showed repulsive interactions with little approach/retraction hysteresis below the LCST, indicating lack of adhesion between the pNIPAM coating and the BSA-coated probe. In contrast, above the LCST the force curves on retraction were characteristic of adhesion, while the approach curves were still repulsive, and the adhesion increased in strength as the temperature was increased further beyond the LCST. Thus, QCM-D and CP-AFM data correlated well in showing a gradual nature of the phase transition and a concomitant gradual change in the interaction force with BSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call