Abstract
The influence of montmorillonite colloids on the mobility of 238Pu, 233U and 137Cs through a chalk fracture was investigated to assess the transport potential for radioactive waste. Radioisotopes of each element, along with the conservative tracer tritium, were injected in the presence and absence of montmorillonite colloids into a naturally fractured chalk core. In parallel, batch experiments were conducted to obtain experimental sorption coefficients (Kd, mL/g) for both montmorillonite colloids and the chalk fracture material. Breakthrough curves were modelled to determine diffusivity and sorption of each radionuclide to the chalk and the colloids under advective conditions. Uranium sorbed sparingly to chalk (log Kd = 0.7 ± 0.2) in batch sorption experiments. 233U(VI) breakthrough was controlled primarily by the matrix diffusion and sorption to chalk (15 and 25% recovery with and without colloids, respectively). Cesium, in contrast, sorbed strongly to both the montmorillonite colloids and chalk (batch log Kd = 3.2 ± 0.01 and 3.9 ± 0.01, respectively). The high affinity to chalk and low colloid concentrations overwhelmed any colloidal Cs transport, resulting in very low 137Cs breakthrough (1.1–5.5% mass recovery). Batch and fracture transport results, and the associated modelling revealed that Pu migrates both as Pu (IV) sorbed to montmorillonite colloids and as dissolved Pu(V) (7% recovery). Transport experiments revealed differences in Pu(IV) and Pu(V) transport behavior that could not be quantified in simple batch experiments but are critical to effectively predict transport behavior of redox-sensitive radionuclides. Finally, a brackish groundwater solution was injected after completion of the fracture flow experiments and resulted in remobilization and recovery of 2.2% of the total sorbed radionuclides which remained in the core from previous experiments. In general, our study demonstrates consistency in sorption behavior between batch and advective fracture transport. The results suggest that colloid-facilitated radionuclide transport will enhance radionuclide migration in fractured chalk for those radionuclides with exceedingly high affinity for colloids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.