Abstract

We investigate the dynamics of monodisperse colloidal polystyrene particles suspended in solutions of the semiflexible polymer filamentous actin, over a range of filament lengths that either exceed or are substantially less than the particle radius. The filament length is controlled by the capping protein gelsolin, and particle surface chemistries that minimize the adsorption of filaments are used. The particle dynamics are measured on short time scales using diffusing wave spectroscopy. A sharp transition in the initial particle diffusivity marks the expected shift from a dilute to a tightly entangled polymer network as the filament average length increases. In both the dilute and entangled regimes, the measured particle dynamics are compared with the theories of rodlike and semiflexible polymer solution rheology using the generalized Stokes-Einstein relationship. In the dilute limit, the particle dynamics are in good agreement with theory. However, in the tightly entangled regime, the particle response is consistent with polymer depleted near the surfaces of the particles. The magnitude of the depletion layer thickness depends strongly on particle size and weakly on filament length. This behavior is in agreement with nonlocal entropic repulsions and the loss of conformational entropy associated with rodlike molecules near impenetrable particles. These results illustrate the use of microrheology as a method to investigate local structure and dynamics in colloid-polymer solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call