Abstract
ABSTRACTThis work introduces a new numerical solution to the inverse parabolic problem with source control parameter that has important applications in large fields of applied science. We expand the approximate solution of the inverse problem in terms of shifted Chebyshev polynomials in time and radial basis functions with symmetric variable shape parameter in space, with unknown coefficients. Unknown coefficient matrix determined using the collocation technique. Sample results show that the proposed method is very accurate. Moreover, the proposed method is compared with two other methods, fourth-order compact difference scheme and method of lines. Finally, we examine the stability of our method for the case where there is additive noise in input data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.