Abstract

The collisionless interaction of an expanding plasma cloud with a magnetized background plasma is examined in the framework of a 3D kinetic-hydrodynamic model. The slowing down of a hydrogen cloud is studied for high Alfven-Mach numbers and magneto-laminar interaction parameters. A particle-in-cell method is used to study the dynamics of the magnetic field, plasma cloud, background plasma, and collisionless shock wave generated by the intense particle flux. A numerical simulation is consistent with the nonstationary interactions between the plasma shells formed during nova and supernova explosions and the interstellar plasma medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.