Abstract

Abstract. Magnetic reconnection is believed to be responsible for various explosive processes in the space plasma including magnetospheric substorms. The Hall effect is proved to play a key role in the reconnection process. An analytical model of steady-state magnetic reconnection in a collisionless incompressible plasma is developed using the electron Hall MHD approximation. It is shown that the initial complicated system of equations may split into a system of independent equations, and the solution of the problem is based on the Grad-Shafranov equation for the magnetic potential. The results of the analytical study are further compared with a two-dimensional particle-in-cell simulation of reconnection. It is shown that both methods demonstrate a close agreement in the electron current and the magnetic and electric field structures obtained. The spatial scales of the acceleration region in the simulation and the analytical study are of the same order. Such features like particles trajectories and the in-plane electric field structure appear essentially similar in both models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.