Abstract

Collisionless damping of geodesic acoustic mode (GAM) excited in the large safety factor (q) region of a tokamak plasma is investigated taking into account the effects of finite ion Larmor radius and guiding-center drift orbit width as well as parallel electric field contributions. A corresponding analytical expression for the damping rate including higher-order harmonics of ion transit resonances is systematically derived and agrees well with numerical results in its validity regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.