Abstract

Trajectory planning of robots is not only an important research field of robotics, but also an challenging combination of artificial intelligence and robotics. Trajectory planning is a key technology of Unmanned Aerial Vehicle (UAV). It is also a prerequisite for autonomous navigation of UAV. Under the static environment distributing of obstacles, seeking a shortest path from the starting point to the target point for global path planning has important scientific significance. This paper presents a method for collision-free trajectory planning and design of UAV. Using grids to process the trajectory environment of UAV and then find the shortest path from the initial point to the target point based on rasterization environment using A* algorithm. The simulation of trajectory planning is implemented under the Microsoft Visual C++ 6.0 development environment. From the simulation of trajectory planning, we can clearly prove that UAV can seek a shortest path from the initial point to the target point based on A* algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call