Abstract

A method is developed to analytically determine the resonance broadening function in quasilinear theory from first principles, due to either Krook or Fokker-Planck scattering collisions of marginally unstable plasma systems where discrete resonance instabilities are excited without any mode overlap. It is demonstrated that a quasilinear system that employs the calculated broadening functions reported here systematically recovers the growth rate and mode saturation levels for near-threshold plasmas previously calculated from nonlinear kinetic theory. The distribution function is also calculated, which enables precise determination of the characteristic collisional resonance width.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call