Abstract

[1] Total removal rate constants of OH(υ = 9) by O atoms, O2, O3, N2, and CO2 were measured at room temperature. Ozone photodissociation at 248 nm in a mixture containing H2 generates O atoms and OH(υ = 9) by the secondary reaction of H atoms with excess O3. Steady state OH(υ = 9) population measurements using laser-induced fluorescence (LIF) determine the relative rate constants for OH(υ = 9) removal by other species present in the gas mixture. Using available measurements of the absolute removal rate constants by O3 and CO2, we extract a value of (4 ± 1) × 10−10 cm3s−1 (2σ) for the OH(υ = 9) + O rate constant. Collisional removal by O2 and N2 is approximately 20 and 600 times slower, respectively. The result for OH(υ = 9) + O indicates that fast O-atom processes play an important role in determining the OH emission and chemical heating rates in the middle terrestrial atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call