Abstract
Energy relaxation of the hot electron population generated by relativistic laser pulses in overdense plasma is analyzed for densities ranging from below to 1000 times solid density. It is predicted that longitudinal beam-plasma instabilities, which dominate energy transfer between hot electrons and plasma at lower densities, are suppressed by collisions beyond solid density. The respective roles of collisional energy transfer modes, i.e., direct collisions, diffusion, and resistive return current heating, are identified with respect to plasma density. The transition between the kinetic and the collisional regimes and scalings of collisional process are demonstrated by a fully integrated one-dimensional collisional particle simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.